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Lecture 21 Highlights 
Phys 402 

 
 Scattering experiments are one of the most important ways to gain an understanding 
of the microscopic world that is described by quantum mechanics.  The idea is to take a 
known entity (for example an electron), give it a known energy and initial momentum 
(magnitude and direction), and send it on a “collision course” with an object whose 
structure and properties are not fully known.  The known entity will interact with the 
particles making up the unknown substance through a (hopefully simple) interaction force.  
In the simplest experiments one then measures the energy and momentum of the known 
entity as it exits from the interaction region.  It is assumed that the interactions take place 
only in a limited region around the target particles.  This experiment is repeated many times 
for a given initial energy and momentum, and statistics of exiting energy and momentum 
are compiled.  This exercise is repeated for other values of initial energy and momentum, 
resulting in a “big data” set.  No wonder that the World Wide Web was invented by 
physicists trying to share this data with all of their colleagues around the world. 
 We began by reviewing scattering in one dimension, where the particle has the 
choice of either being reflected or transmitted.  The results can be summarized nicely using 
the Scattering matrix 𝑆𝑆.  In three dimensions, the scattered particles can go off in any 
direction, so it is useful to put the scattering center at the origin and use spherical 
coordinates to describe the scattered particle direction.  Note that in all cases we are now 
considering only scattering states (as opposed to bound states), and these have energy 𝐸𝐸 >
0. 
 

Examples of scattering experiments include Rutherford scattering and angle-
resolved photoemission spectroscopy (ARPES), which is basically the photoelectric effect 
on steroids.  The language of quantum scattering theory is used throughout physics, 
including high energy physics, nuclear physics, quantum optics, condensed matter physics, 
etc.  Although it is rather technical, it is worth learning this theory… 

   
Classical Scattering Theory 

In classical mechanics it is appropriate to consider point particles that follow well-
defined trajectories.  The starting point for thinking about scattering is having a light 
particle incident from infinity on a heavy stationary target particle.  Classically, the incident 
particle is travelling in a straight line as it approaches the potential created by the target 
particle.  If it feels no interaction force, then it will travel by in an un-deviated straight line 

https://www.physics.umd.edu/courses/Phys402/AnlageFall22/Quantum%20Scattering%20in%20One%20and%20Three%20Dimensions.pdf
https://www.physics.umd.edu/courses/Phys402/AnlageFall22/Rutherford%20Scattering.pdf
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trajectory.  The distance between its incident direction and the trajectory that sends it into 
a “head-on” collision with the target particle is called the “impact parameter” and often 
denoted with the symbol 𝑏𝑏.  The extension of the “head-on” direction to infinity is defined 
as the z-axis.  As the incident particle approaches the target it experiences a force that 
causes it to deviate away from its initial trajectory.  After this interaction the light particle 
will be free once again of the target potential and move off in a straight line trajectory.  We 
define this outgoing trajectory direction using spherical angular coordinates (𝜃𝜃,𝜑𝜑) from 
the above-defined z-axis.  To describe the results of many such experiments with different 
impact parameters and outgoing directions, we establish a differential relationship between 
a finite-size incident beam area and an outgoing beam of particles into a differential solid 
angle 𝑑𝑑Ω. 
 

The only quantity not controlled in a typical scattering experiment is the impact 
parameter 𝑏𝑏 of the projectile with respect to the target particle.  The impact parameter is 
the distance of closest approach to the target particle, assuming no forces of interaction 
cause the projectile to change from its initial direction.  Because we cannot control the 
impact parameter, we have to perform many experiments in which all possible values of 𝑏𝑏 
are employed for the incident beam of projectiles.  We then give a (classical) statistical 
description of the resulting scattering.  With such a description, we can write the number 
of particles scattered 𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 in terms of the number of particles incident 𝑁𝑁𝑖𝑖𝑖𝑖𝑠𝑠 as 𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =
𝑁𝑁𝑖𝑖𝑖𝑖𝑠𝑠𝑛𝑛𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡𝑡𝑡𝑠𝑠𝜎𝜎, where 𝑛𝑛𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡𝑡𝑡𝑠𝑠 is the density of target particles projected into the two-
dimensional plane (𝑛𝑛𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡𝑡𝑡𝑠𝑠~1/𝑚𝑚2) and 𝜎𝜎 is defined as the scattering cross section of each 
particle.  𝜎𝜎 is often measured in units of ‘barns’, which is 10−28𝑚𝑚2.  We can generalize 
the concept of cross section to any process, including capture (𝜎𝜎𝑠𝑠𝑠𝑠𝑐𝑐𝑠𝑠𝑐𝑐𝑡𝑡𝑡𝑡), ionization 
(𝜎𝜎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖), fission (𝜎𝜎𝑓𝑓𝑖𝑖𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖), etc.  This is done by using the definition 𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑥𝑥 =
𝑁𝑁𝑖𝑖𝑖𝑖𝑠𝑠𝑛𝑛𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡𝑡𝑡𝑠𝑠𝜎𝜎𝑥𝑥 for process “𝑥𝑥”.  Here we will consider only elastic (energy conserving) 
scattering. 

Experiments start with a beam of projectile particles of identical structure and equal 
initial momenta and energy.  The projectiles enter the target with all possible values of 
impact parameter.  One then measures how many particles come out with angle of exit  
𝜃𝜃,𝜑𝜑 and also the energy and momentum of the exiting particle.  Our job is to identify the 
force of interaction between the projectile and target particles from the number of particles 
scattered through angle 𝜃𝜃,𝜑𝜑, for all possible angles.  We write the ‘angle-resolved’ 
scattering cross section as 𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖 𝑑𝑑Ω 𝑎𝑎𝑎𝑎𝑖𝑖𝑎𝑎𝑛𝑛𝑑𝑑 𝜃𝜃,𝜑𝜑)  = 𝑁𝑁𝑖𝑖𝑖𝑖𝑠𝑠𝑛𝑛𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡𝑡𝑡𝑠𝑠

𝑑𝑑𝑑𝑑
𝑑𝑑Ω

(𝜃𝜃,𝜑𝜑)𝑑𝑑Ω, 

where 𝑑𝑑𝑑𝑑
𝑑𝑑Ω

(𝜃𝜃,𝜑𝜑) is called the differential scattering cross section (DSCS).  Note that the 
element of differential solid angle is 𝑑𝑑Ω = sin𝜃𝜃 𝑑𝑑𝜃𝜃𝑑𝑑𝜑𝜑.  We expect that if this quantity is 
integrated over all possible exiting angles, we should recover the total scattering cross 
section for this process: 𝜎𝜎 = ∬𝑑𝑑𝑑𝑑

𝑑𝑑Ω
(𝜃𝜃,𝜑𝜑)𝑑𝑑Ω.  We shall assume that all scattering potentials 

are spherically symmetric, hence there will be no dependence on the 𝜑𝜑 coordinate. 
To find 𝑑𝑑𝑑𝑑

𝑑𝑑Ω
(𝜃𝜃,𝜑𝜑) we compare the area covered by the incident particles at impact 

parameters between 𝑏𝑏 and 𝑏𝑏 + 𝑑𝑑𝑏𝑏 in an angle 𝑑𝑑𝑑𝑑 (i.e. 𝑑𝑑𝜎𝜎 = 𝑏𝑏 𝑑𝑑𝑏𝑏 𝑑𝑑𝑑𝑑) to the solid angle 
subtended by the exiting beam of particles (i.e. 𝑑𝑑Ω = sin𝜃𝜃 𝑑𝑑𝜃𝜃 𝑑𝑑𝑑𝑑) to arrive at 𝑑𝑑𝑑𝑑

𝑑𝑑Ω
=

𝑏𝑏
sin𝜃𝜃

�𝑑𝑑𝑏𝑏
𝑑𝑑𝜃𝜃
�.  To find the DSCS, we need to calculate the trajectory of a projectile particle for 
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every possible impact parameter.  We then did the example of a point particle elastically 
scattering from a fixed hard sphere of radius 𝑅𝑅 and found that 𝑏𝑏 = 𝑅𝑅 cos �𝜃𝜃

2
�,  𝑑𝑑𝑑𝑑

𝑑𝑑Ω
= 𝑅𝑅2

4
, 

which is independent of angle!  The total scattering cross section is just 𝜎𝜎 = 𝜋𝜋𝑅𝑅2, which is 
the cross-sectional area presented by the sphere. 

Another famous case of classical scattering theory is Rutherford scattering associated 
with a Coulomb interaction.  This type of scattering experiment was used to deduce that 
most of the mass of the atom was concentrated in a small volume known as the nucleus.  

The DSCS was deduced to be : 𝐷𝐷(𝜃𝜃) = 𝑑𝑑𝑑𝑑
𝑑𝑑Ω

= � 𝑞𝑞𝑞𝑞/4𝜋𝜋𝜀𝜀0
4𝐸𝐸 sin2(𝜃𝜃/2)�

2
, where 𝐸𝐸 is the energy of the 

incident particle of charge 𝑞𝑞 approaching a target of charge 𝑄𝑄 and scattering through angle 
𝜃𝜃.  The DSCS has a distinctive 1

sin4(𝜃𝜃/2) angular dependence, which was clearly observed 
by Geiger and Marsden using 𝛼𝛼-particles scattering from thin Au foils.  They also showed 
that the scattering rate scaled with 𝑛𝑛𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡𝑡𝑡𝑠𝑠 (by varying the thickness of the foil), scaled as 
1/E2 (by varying the energy of the incident alpha particles), scaled as 1

sin4(𝜃𝜃/2) (by 
measuring the number of particles scattered vs. outgoing angle), and scaled as 𝑍𝑍2, where 
𝑄𝑄 = +𝑍𝑍𝑍𝑍 is the nuclear charge. 

Note that because 𝑑𝑑𝑑𝑑
𝑑𝑑Ω

~𝑞𝑞2𝑄𝑄2, the scattered particle distribution is insensitive to whether 
the Coulomb interaction is attractive or repulsive.  Also, the agreement for the angular 
dependence of 𝑑𝑑𝑑𝑑

𝑑𝑑Ω
 with data suggests that the Coulomb force has the simple 1/r2 dependence 

even down to nuclear length scales.  Finally, the total scattering cross section calculated 
from this 𝑑𝑑𝑑𝑑

𝑑𝑑Ω
 diverges.  This is because the bare Coulomb force is infinitely long ranged.  

In reality, the Coulomb force of the nucleus is screened out by the electron cloud of the 
atom, on the length scale of one nm, or less.  When this screening is taken into account the 
total scattering cross section becomes finite, as observed.  

These calculations assume that the alpha particle only undergoes one scattering event 
in the material (the Born scattering approximation).  In addition, because of the electron 
screening, when an alpha particle is near one nucleus, it is insensitive to all the other nuclei 
because they are ‘cloaked’ by their neutralizing electron clouds.  
 
Quantum Scattering Theory 
 In quantum mechanics one does not describe the particles in terms of trajectories, 
but as waves.  We replace the incident particle trajectory with a plane wave moving in the 
z-direction 𝜓𝜓𝑖𝑖𝑖𝑖𝑠𝑠𝑖𝑖𝑑𝑑𝑡𝑡𝑖𝑖𝑠𝑠 = 𝐴𝐴 𝑍𝑍𝑖𝑖𝑖𝑖𝑖𝑖, where the energy of the particle is 𝐸𝐸 = ℏ2𝑘𝑘2/(2𝑚𝑚).   
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 As implied by this picture, a plane wave essentially sends ‘particles’ of every 
possible impact parameter at the target at once! 

This wave interacts with the scattering center and sends out a collection of outgoing 
spherical waves centered on the scatterer, as shown in the picture above.  We expect 
solutions at large distances from the scattering center of the form, 

𝜓𝜓(𝑎𝑎,𝜃𝜃) = 𝐴𝐴 �𝑍𝑍𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑓𝑓(𝜃𝜃) 𝑡𝑡
𝑖𝑖𝑖𝑖𝑖𝑖

𝑡𝑡
�,    (1) 

where the first term in the bracket is the incoming plane wave and the second term is an 
outgoing spherical wave with a direction-dependent coefficient 𝑓𝑓(𝜃𝜃).  Since the scattering 
potential is assumed to be spherically symmetric we expect no dependence on the 
azimuthal spherical coordinate, 𝑑𝑑. 
 Instead of calculating a trajectory and an impact parameter for this wave (which 
makes no sense) we instead deal with probability flow through the scattering region.  
Equating the probability of the incident particle being in a differential volume of size 
𝑑𝑑𝜎𝜎 𝑣𝑣 𝑑𝑑𝑖𝑖 (where 𝑣𝑣 is the speed) to the outgoing scattered wave being in a differential volume 
𝑎𝑎2 𝑑𝑑Ω 𝑣𝑣 𝑑𝑑𝑖𝑖 described by the wavefunction above, yields the DSCS 𝐷𝐷(𝜃𝜃) = 𝑑𝑑𝑑𝑑

𝑑𝑑Ω
= |𝑓𝑓(𝜃𝜃)|2. 

  One can proceed using Partial Wave Analysis.  This process decomposes the 
scattering by breaking it into a series of scattering events of progressively higher angular 
momentum scattering states.  This is essentially analogous to considering classical particles 
with larger and larger values of the impact parameter. 
 We wish to solve the full Schrodinger equation for a spherically symmetric 
potential 𝑉𝑉(𝑎𝑎).  From previous studies of the 3D Schrodinger equation in chapter 4 we 
know the successful ansatz for this case is 𝜓𝜓(𝑎𝑎,𝜃𝜃,𝑑𝑑) = 𝑅𝑅(𝑎𝑎) 𝑌𝑌ℓ,𝑚𝑚(𝜃𝜃,𝑑𝑑), where 𝑌𝑌ℓ,𝑚𝑚(𝜃𝜃,𝑑𝑑) 
are the spherical harmonics.  This separates the problem into angular equations (already 
solved by the spherical harmonics) and a radial equation.  Defining 𝑎𝑎(𝑎𝑎) ≡ 𝑎𝑎𝑅𝑅(𝑎𝑎), we find 
that the radial equation reduces to 
− ℏ2

2𝑚𝑚
𝑑𝑑2𝑐𝑐
𝑑𝑑𝑡𝑡2

+ �𝑉𝑉(𝑎𝑎) + ℓ(ℓ+1)ℏ2

2𝑚𝑚𝑡𝑡2
� 𝑎𝑎 = 𝐸𝐸𝑎𝑎       (2) 

 We divide the problem into 3 regions. First is the asymptotic region where both 
𝑉𝑉(𝑎𝑎) → 0 and the centrifugal term ℓ(ℓ+1)ℏ2

2𝑚𝑚𝑡𝑡2
 can be ignored.  In this Radiation zone one has 

𝑘𝑘𝑎𝑎 ≫ 1.  The radial Schrodinger equation becomes quite simple:  

https://www.physics.umd.edu/courses/Phys402/AnlageFall22/Quantum%20Scattering%20in%20Zen%20Gardens%20of%20Japan.pdf
https://www.physics.umd.edu/courses/Phys402/AnlageFall22/Quantum%20Scattering%20in%20Zen%20Gardens%20of%20Japan.pdf
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− ℏ2

2𝑚𝑚
𝑑𝑑2𝑐𝑐
𝑑𝑑𝑡𝑡2

= 𝐸𝐸𝑎𝑎, or 𝑑𝑑
2𝑐𝑐
𝑑𝑑𝑡𝑡2

= −𝑘𝑘2𝑎𝑎, with solutions 𝑎𝑎(𝑎𝑎) ~ 𝑍𝑍±𝑖𝑖𝑖𝑖𝑡𝑡.  This gives an outgoing wave 

of the form 𝑅𝑅(𝑎𝑎) = 𝑐𝑐
𝑡𝑡

= 𝐴𝐴 𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖

𝑡𝑡
, which was the form posited above in Eq. (1). 

 The next domain is the Intermediate region where we can assume that 𝑉𝑉(𝑎𝑎) → 0 
but the centrifugal term cannot be neglected.  This assumes that the scattering potential is 
localized, which means effectively that it falls off faster than 1

𝑡𝑡2
.  In this region the radial 

Schrodinger equation becomes  
− ℏ2

2𝑚𝑚
𝑑𝑑2𝑐𝑐
𝑑𝑑𝑡𝑡2

+ �ℓ(ℓ+1)ℏ2

2𝑚𝑚𝑡𝑡2
� 𝑎𝑎 = 𝐸𝐸𝑎𝑎, or 𝑑𝑑

2𝑐𝑐
𝑑𝑑𝑡𝑡2

− �ℓ(ℓ+1)
𝑡𝑡2

� 𝑎𝑎 = −𝑘𝑘2𝑎𝑎.  The solutions are of the form 
of spherical Bessel functions: 𝑎𝑎(𝑎𝑎) = 𝐴𝐴 𝑎𝑎𝑗𝑗ℓ(𝑘𝑘𝑎𝑎) + 𝐵𝐵 𝑎𝑎𝑛𝑛ℓ(𝑘𝑘𝑎𝑎), where the 𝑗𝑗ℓ(𝑥𝑥) remain 
finite as 𝑥𝑥 → 0, while the 𝑛𝑛ℓ(𝑥𝑥) do not.  Roughly speaking 𝑗𝑗ℓ(𝑘𝑘𝑎𝑎) is analogous to sin 𝑥𝑥, 
while 𝑛𝑛ℓ(𝑘𝑘𝑎𝑎) is analogous to cos 𝑥𝑥.  As with trigonometric functions, it is sometimes useful 
to consider their complex sum, which are called the spherical Hankel functions of the first 
and second kind, defined as ℎℓ

(1)(𝑘𝑘𝑎𝑎) = 𝑗𝑗ℓ(𝑘𝑘𝑎𝑎) + 𝑖𝑖𝑛𝑛ℓ(𝑘𝑘𝑎𝑎) and ℎℓ
(2)(𝑘𝑘𝑎𝑎) = 𝑗𝑗ℓ(𝑘𝑘𝑎𝑎) −

𝑖𝑖𝑛𝑛ℓ(𝑘𝑘𝑎𝑎).  The spherical Hankel function of the first kind has the useful property that it turns 
into an outgoing spherical wave for large argument: ℎℓ

(1)(𝑘𝑘𝑎𝑎 ≫ 1) → 𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖

𝑡𝑡
.  The solution for 

the radial wavefunction now becomes 𝑅𝑅(𝑎𝑎) = ℎℓ
(1)(𝑘𝑘𝑎𝑎).   


